Heart grafts tolerized through third-party multipotent adult progenitor cells can be retransplanted to secondary hosts with no immunosuppression.
نویسندگان
چکیده
Multipotent adult progenitor cells (MAPCs) are an adherent stem cell population that belongs to the mesenchymal-type progenitor cell family. Although MAPCs are emerging as candidate agents for immunomodulation after solid organ transplantation, their value requires further validation in a clinically relevant cell therapy model using an organ donor- and organ recipient-independent, third-party cell product. We report that stable allograft survival can be achieved following third-party MAPC infusion in a rat model of fully allogeneic, heterotopic heart transplantation. Furthermore, long-term accepted heart grafts recovered from MAPC-treated animals can be successfully retransplanted to naïve animals without additional immunosuppression. This prolongation of MAPC-mediated allograft acceptance depends upon a myeloid cell population since depletion of macrophages by clodronate abrogates the tolerogenic MAPC effect. We also show that MAPC-mediated allograft acceptance differs mechanistically from drug-induced tolerance regarding marker gene expression, T regulatory cell induction, retransplantability, and macrophage dependence. MAPC-based immunomodulation represents a promising pathway for clinical immunotherapy that has led us to initiate a phase I clinical trial for testing safety and feasibility of third-party MAPC therapy after liver transplantation.
منابع مشابه
T cell suppression in transplantation tolerance through linked recognition.
Allogeneic tissues transplanted to mice treated with CD4- and CD8-specific Abs are often accepted indefinitely due to the induction of immunologic tolerance. When transplantation tolerance was induced to grafts mismatched at multiple minor histocompatibility loci, Ag specificity was inferred because third party grafts, mismatched at the MHC, were rejected normally. However, some "third party" g...
متن کاملIdentification of Regulatory T Cells in Tolerated Allografts
Induction of transplantation tolerance with certain therapeutic nondepleting monoclonal antibodies can lead to a robust state of peripheral "dominant" tolerance. Regulatory CD4+ T cells, which mediate this form of "dominant" tolerance, can be isolated from spleens of tolerant animals. To determine whether there were any extra-lymphoid sites that might harbor regulatory T cells we sought their p...
متن کاملImmunohistological and electrophysiological characterization of Globose basal stem cells
Objective(s): In the past few decades, variety of foetal, embryonic and adult stem and progenitor cells have been tried with conflicting outcome for cell therapy of central nervous system injury and diseases. Cellular characteristics and functional plasticity of Globose basal stem cells (GBCs) residing in the olfactory epithelium of rat olfactory mucosa have not been studied in the past by the ...
متن کاملHematopoietic progenitor/stem cells immortalized by Lhx2 generate functional hematopoietic cells in vivo.
Hematopoietic stem cells (HSCs) are unique in their capacity to maintain blood formation following transplantation into immunocompromised hosts. Expansion of HSCs in vitro is therefore important for many clinical applications but has met with limited success because the mechanisms regulating the self-renewal process are poorly defined. We have previously shown that expression of the LIM-homeobo...
متن کاملLymphocytes selected in allogeneic thymic epithelium mediate dominant tolerance toward tissue grafts of the thymic epithelium haplotype.
Athymic mice grafted at birth with allogeneic thymic epithelium (TE) from day 10 embryos before hematopoietic cell colonization reconstitute normal numbers of T cells and exhibit full life-long tolerance to skin grafts of the TE haplotype. Intravenous transfers of splenic cells, from these animals to adult syngeneic athymic recipients, reconstitute T-cell compartments and the ability to reject ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Stem cells translational medicine
دوره 2 8 شماره
صفحات -
تاریخ انتشار 2013